Cider-making: an overview

Andrew Lea discusses some current trends in cider-making, from juicing and fermentation to sensory attributes
spread of harvesting period dictate the growing of relatively mixed orchards. Hence, fruit selection and pre-fermentation blending is regarded as a part of the traditional cider-maker’s art. Apple juice concentrate (AJC) is now widely used in UK factory cider-making and is permissible also to a limited extent in France. ‘Bulk’ concentrates are bought on the world market, while UK bittersweet concentrates are prepared in-house for later use. This reduces the seasonal impact of fruit supply, and enables factory cider-making to carry on throughout the year in a fashion similar to the brewing of beer.

Juice preparation

Fresh cider fruit is traditionally stored for a few weeks after harvest so that all the starch converts to sugar (although nowadays any juices added to pulp can also achieve this). Apples must be sorted and washed before milling to eliminate rotten fruit and orchard debris, which have adverse effects on microbiological status and on ultimate cider quality. Modern mills are high-speed stainless steel graters, but in previous times horse-powered ‘edge-runner’ stone mills were used. The juice is squeezed from the milled pulp in a separate operation. Labour-intensive pack presses have traditionally been used for this but automated horizontal piston presses and/or bolt presses are now usual in the larger factories.

Once the juice is prepared, it is coarsely screened and run off to tanks of fibreglass, high density polythene, stainless steel or (much less commonly) wood for pre-fermentation blending and additions. In English factory cider-making, the fermentable sugar sources (juice, AJC and sugar syrups) are blended to the required level (Specific Gravity up to 1.100). Nutrients such as ammonium phosphate and thiamine are also added to ensure a complete and speedy fermentation to dryness. Broad-spectrum pectinases are used at this stage to prevent haze formation later.

Traditional pure juice ciders start at around SG 1.055 and may be fermented for weeks or even months. The traditional spontaneous pre-fermentation clarification of juice by the action of endogenous pectin methyl-esterase (PME) (‘keeving’) is now effectively obsolete in英格兰 but is still central to the industry in France where nitrogen flotation and added PME are used for reliability. This also has the deliberate effect of removing nutrients from the juice to ensure a very slow subsequent fermentation.

A significant adjunct in cider-making, as in white wine-making, is sulphur dioxide, primarily as an antimicrobial but also as an antioxidant. This was traditionally added by burning a ‘sulphur candle’ in the barrel, but is now controlled by the addition of defined levels of metabisulphite. The effectiveness of SO₂ is pH dependent since it is only undissociated (so-called ‘molecular SO₂’) which has anti-microbial properties.

Hence, cider juices are usually brought below pH 3.8 by the addition of malic acid before addition of SO₂. If the original fruit is in poor condition, it may contain large amounts of 5-ketofructose or diketogluconic acid from bacterial activity, which will bind most of the added SO₂ and reduce its effectiveness.

Yeast selection

In traditional cider-making, no external source of yeast is added. However, once the apples themselves contain a mixed yeast microflora in the order of 5 x 10⁴ cells per gram of stored fruit, spontaneous fermentation will commence within a few hours if the temperature of the juice is above 10°C. In such a fermentation, where no yeast is added and no sulphite is used, the first few days are dominated by the non-Saccharomyces yeasts such as *Kloeckera apiculata*, followed by a succession to *Saccharomyces* spp. as

SEM of ‘wild yeast’ cider fermentation from a rat, showing a diverse yeast flora, including the characteristic ‘lemon-shaped’ apiculate yeasts, e.g. *Kloeckera apiculata*, in addition to *Saccharomyces* spp. (Photo Credit: Jill Webb, RSST).

UK cider sales have doubled in the last 10 years (Photo Credit: NACM).
the alcohol level rises and the initial colonisers die out. Nowadays, however, heavy sulphiting followed by pure culture inoculation with Saccharomyces wine yeasts is almost universal in the mainstream UK cider industry.

Craft cider-makers do not necessarily follow suit on yeast inoculation and often prefer some element of the natural microflora to remain. The judicious use of low-level SO₂ can help to eliminate the most troublesome yeast and bacteria while still allowing a more diverse population to develop than is available from a single added monoculture. In France, the need for a mixed microflora is regarded as axiomatic for reasons of flavour complexity. Modern French factory cider-making is still based on traditional procedures, and care is taken to ensure a cool slow fermentation over several months, so that significant residual sugars remain in the final product. English factory practice is almost completely the opposite, a rapid and complete fermentation to 12% alcohol in as little as one week being a desirable objective.

The malo-lactic fermentation

Traditional ciders are very frequently subject to a malo-lactic fermentation. The major desirable organism responsible for this change is the bacterium Lactobacillus, although other Lactobacillus species may also be present. It is favoured by a lack of sulphuring during fermentation and storage, and by a certain amount of nutrient release from yeast autolysis when the cider stands un racked on its lees. In French and Spanish cider-making, where the primary fermentation is very slow, the malo-lactic change may occur concurrently with the yeast fermentation, whereas in UK cider-making, it is most likely to occur once the yeast fermentation has finished and the cider is in bulk store.

The most obvious external feature of the malo-lactic change is the decarboxylation of malic to lactic acid and the consequent evolution of gas. The acidity therefore falls and the flavour becomes rounded and more complex. In traditional stored cider in the UK, this takes place in Spring as the weather warms up and the trees blossom, thereby giving rise to the belief that the trees and the cider are somehow working in sympathy! In modern UK factory cider-making, the malo-lactic fermentation is generally regarded as a nuisance because of the loss of acid and is not encouraged, but it is normally welcomed by craft cider-makers and indeed may even be deliberately induced by the inoculation of commercial (winemaking) bacterial cultures. Old oak 'maturation' vats have been shown to retain the bacteria within the pores of the wood and hence provide an immediate inoculum for each new filling of cider.

Storage and packaging

Once yeast fermentation is complete, ciders are racked from the yeast lees for storage. In some English factories, racking and clarification takes place as soon as possible for virtually immediate blending and Packaging without any maturation. In others, the ciders remain on their lees for several weeks and are racked into inert tanks or oak vats for a maturation period of several months. During this time a malolactic fermentation may or may not be encouraged; if considered desirable, no sulphur dioxide must be added during storage or the bacteria will be inhibited. At any rate, all is the enemy of cider and must be rigorously excluded during storage.

Initial clarification may be performed by the natural settling of a flocculating yeast, by centrifugation, by 'fining' with gelatin or chitosan, or by a combination of all three, before blending. Craft cider-makers generally perform less post-fermentation blending than do the major producers. In a large factory, high alcohol base ciders will be blended according to the cider-maker's requirements. Water will be added to these bases to give the correct alcoholic strength for retail sale (3.5-8.5%), together with additions of sugar and artificial sweeteners, malic or other acids, permitted food colours, preservatives and carbonation. Generally, UK regulations permit for cider all those operations or additives which are allowed by EU 'horizontal' food law. In France and Germany, specific 'vertical' legislation applies to cider and is much more restrictive.

Final filtration may take place just before and after blending. Typically, powder filters or coarse disposable sheets are used to produce a bright product, followed by near-steric sheet or membrane filtration (0.5 μm) to remove all yeasts and most bacteria. Cross-flow membrane filtration systems have become a popular and efficient alternative in recent years. Most ciders are then pasteurised and/or carbonated into the final pack. In some cases, in-bottle or tunnel pasteurisation of glass bottles or cans is still used. With the widespread use of PET bottles by many producers, HTST treatment in a flow-through pasteuriser and chill is required followed by near-aerobic filling conditions. For mainstream pub sales, cider is filled into pressure-dense kegs as is beer.

There is a certain market for 'naturally-conditioned' ciders in kegs or small plastic barrels. These are generally produced from fully fermented dry ciders, to which an additional charge of sugar and yeast has then been added. The product is of course somewhat cloudy but may remain in good condition for many weeks due to the slow continued fermentation. Traditional bottled cider in the UK up to the mid-20th Century was naturally conditioned in the bottle and retained a slight yeast deposit (as much French 'antique' cider does now), but due to its variability and the danger of exploding bottles it was gradually replaced by forced-carbonation. It is now known that the traditional system was invented in the Forest of Dean in
Cider flavour

As with any beverage, the flavour of cider is a combination of taste and aroma. Traditional English and French ciders made from bittersweet fruit have been distinguished by relatively high levels of bitterness and aromatic compounds due to the polyphenolic propanoids (cinnam), which has often been attributed to their lower nutrient status. It is also known that higher juice levels are generated from cloudy fruits due to their fermentation and these factors may contribute to the 'hangover-generating' properties of raw 'scrumpy' ciders. Work at LARS over a number of years listed several hundred compounds as contributors to cider aroma. Some of these arise from non-volatile glycosyl precursors which can be hydrolysed by enzymic action when the fruit is damaged. Therefore, the high levels of 2-phenyl ethanol and esters in ciders may not only derive from yeast synthesis or deamination of phenylalanine (both routes are known), but also from the presence of a glycosidically-bound form in the fruit, which is liberated and cleaved during fermentation.

One of the most interesting and perhaps unique volatile components of cider is the diacetyl, which results from the condensation of acetdehyde (a normal fermentation metabolite) with octane-1,3-diol. The diol itself is an unusual alcohol, which is known to be restricted almost entirely to apples and is present in a glycosidically-bound form. The resultant diacetyl has a characteristic green and 'cider' note and results specifically from the action of alcoholic fermentation on apples and no other way.

A particular group of compounds described as 'spicy' and 'phenolic' derive principally from the malo-lactic fermentation in bittersweet ciders. These are typified by ethyl phenol and ethyl catechol, which arise from hydrolysis, decarboxylation and reduction of certain phenolic acids in the fruit. Although these volatile phenols are not unique to cider, being found in whiskies too, they are distinctive contributors at low levels to the characteristic 'spicy-bittersweet' aromas of well-made traditional ciders from the West Country or Normandy.

Further reading and information

Three Counties Cider and Perry Association website: www.threecountiesciderandperryassociation.co.uk

Dr Andrew Lee is a member of the Cider Society at Anglian Ashton Recreation Station, University of Bristol. He now works at Reading Scientific Services Ltd, The Lord Zuckermann Research Centre, Whiteknights, Reading RG6 2LA, UK. Tel: +44 (0)118 986 8541 Email: Andrew.C.Le@rssl.com Web: www.rssl.com

Traditional stone press (photo credit: NACM).

Modern temperature controlled stainless steel vats (photo credit: NACM).